• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Impact and Extent of Traffic-Based Pollution on N and P Use Proficiency and Litter Decomposition in Malus domestica Borkh.

xmlui.dri2xhtml.METS-1.0.item-rights

info:eu-repo/semantics/closedAccess

Date

2016

Author

Karavin, Neslihan
Ural, Zuhal

Metadata

Show full item record

Abstract

Traffic-based pollution causes accumulation of some elements in plant tissues and damages anatomical and physiological processes of plants. Nutrient use proficiency and litter decomposition are two basic processes of nutrient dynamics This study aimed to determine the effects of traffic-based pollution on N and. P use proficiency and litter decomposition in Malus domestica Borkh. (Rosaceae) which is a commonly cultivated fruit tree worldwide. The study was carried out in Amasya, Turkey, where the apple is the symbol of the city. Leaf samples were collected from apple trees at 0-, 100-, and 200-meter distances from the highway. N, P, Cd, Co, Cr, Cu, Fe, Mn, Ni, Ph, and Zn concentrations were measured in the collected samples. All of the element concentrations varied according to the distance from the road, Traffic-based heavy metal pollution increased N and P use proficiency. It may be said that M. domestica reabsorb more N and P from senescent leaves due to the high heavy metal concentrations in their leaves. The decomposition rate was highest at 0 m and lowest at 100 m. The variations in the remaining dry weight. mass loss (%), and k value due to traffic-based pollution were not statistically significant. A significant negative relationship was determined between the initial N concentration and the litter decomposition rate. It was thought that this negative relationship resulted from recalcitrant condensation products that are formed by lignin and N.

Source

WATER AIR AND SOIL POLLUTION

Volume

227

Issue

6

URI

https://dx.doi.org/10.1007/s11270-016-2881-4
https://hdl.handle.net/20.500.12450/1207

Collections

  • WoS İndeksli Yayınlar Koleksiyonu [2182]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@Amasya

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess Type

My Account

LoginRegister

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Instruction || Guide || Library || Amasya University || OAI-PMH ||

Amasya Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı, Amasya, Turkey
If you find any errors in content, please contact: openaccess@amasya.edu.tr

Creative Commons License
DSpace@Amasya by Amasya University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Amasya: