dc.contributor.author | Orhan, Ozge Yuksel | |
dc.contributor.author | Tankal, Hilal | |
dc.contributor.author | Kayi, Hakan | |
dc.contributor.author | Alper, Erdogan | |
dc.date.accessioned | 2019-09-01T13:05:12Z | |
dc.date.available | 2019-09-01T13:05:12Z | |
dc.date.issued | 2016 | |
dc.identifier.issn | 1750-5836 | |
dc.identifier.issn | 1878-0148 | |
dc.identifier.uri | https://dx.doi.org/10.1016/j.ijggc.2016.03.023 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12450/1205 | |
dc.description | WOS: 000376459200035 | en_US |
dc.description.abstract | In the scope of this work, new carbon dioxide binding organic liquids (CO(2)BOLs) were developed and kinetic parameters in terms of pseudo first-order rate constants for homogenous reaction between CO2 and CO(2)BOLs in 1-hexanol were obtained by using stopped-flow method with conductivity detection. As an amidine DBN (1,5-diazabicyclo[4.3.0]non-5-ene) and as a guanidine TBD (1,5,7-triazabicyclo[4.4.0]dec-5-ene) and BTMG (2-tert-butyl-1,1,3,3-tetramethylguanidine) were investigated. Experiments were performed by varying organic base (amidine or guanidine) weight percentage in 1-hexanol medium for a temperature range of 288-308 K. A modified termolecular reaction mechanism was used to analyse the experimental kinetic data. In addition, quantum chemical calculations by using B3LYP, MP2 and CCSD methods were performed to reveal the structural and energetic details of the single step termolecular reaction mechanism. Experimental and theoretical activation energies for these novel carbon dioxide capturing organic liquids were also unveiled. (C) 2016 Elsevier Ltd. All rights reserved. | en_US |
dc.description.sponsorship | Turkish Scientific and Technological Research Council (TUBITAK) [213M390] | en_US |
dc.description.sponsorship | This work was supported by a Turkish Scientific and Technological Research Council (TUBITAK) through a research project (Project No.: 213M390). Authors gratefully acknowledge this financial support. Authors also thank Prof. Telhat Ozdogan of Amasya University for his contributions to the computational part of this study. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | ELSEVIER SCI LTD | en_US |
dc.relation.isversionof | 10.1016/j.ijggc.2016.03.023 | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Carbon dioxide absorption | en_US |
dc.subject | Carbon dioxide binding organic liquids | en_US |
dc.subject | BTMG | en_US |
dc.subject | TDB | en_US |
dc.subject | Stopped-flow technique | en_US |
dc.subject | DFT | en_US |
dc.title | Kinetics of CO2 capture by carbon dioxide binding organic liquids: Experimental and molecular modelling studies | en_US |
dc.type | article | en_US |
dc.relation.journal | INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL | en_US |
dc.authorid | Kayi, Hakan -- 0000-0001-7300-0325 | en_US |
dc.identifier.volume | 49 | en_US |
dc.identifier.startpage | 379 | en_US |
dc.identifier.endpage | 386 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.contributor.department-temp | [Orhan, Ozge Yuksel -- Alper, Erdogan] Hacettepe Univ, Dept Chem Engn, TR-06800 Ankara, Turkey -- [Tankal, Hilal] Amasya Univ, Dept Phys, Amasya, Turkey -- [Kayi, Hakan] Atilim Univ, Chem Engn & Appl Chem Dept, Ankara, Turkey | en_US |