• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Comparison of different classification methods for the preictal stage detection in EEG signals.

xmlui.dri2xhtml.METS-1.0.item-rights

info:eu-repo/semantics/closedAccess

Date

2017

Author

Yildiz, M.
Bergil, E.
Oral, C.

Metadata

Show full item record

Abstract

In this study, we present an evaluation and comparison of the widely used linear discriminant analysis, k-Nearest neighbor algorithm, support vector machines, multi-layer perceptron neural network and decision tree classification performances for preictal stage detection in EEG signal. Analysis has been done for fourteen patients with epilepsy. Firstly, 26 features are extracted from time domain, frequency domain and power spectrum. The feature set dimensionality has been reduced from 26 to 8 using Principal Component Analysis. Finally, five classifiers have been employed to classify EEG signals into normal, ictal and preictal stages. The classification is performed for patient-specific. We emphasized the importance of the analysis of preictal stage for seizure prediction. According to classification results and ROC analysis, Linear Discriminant Analysis and Support Vector Machines have better performances than others. LDA achieved the highest average sensitivity with 88.06% in the preictal stage detection process. The results are very promising and contributing to possible guide for future seizure detection and prediction studies.

Source

BIOMEDICAL RESEARCH-INDIA

Volume

28

Issue

2

URI

https://hdl.handle.net/20.500.12450/1146

Collections

  • WoS İndeksli Yayınlar Koleksiyonu [2182]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@Amasya

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess Type

My Account

LoginRegister

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Instruction || Guide || Library || Amasya University || OAI-PMH ||

Amasya Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı, Amasya, Turkey
If you find any errors in content, please contact: openaccess@amasya.edu.tr

Creative Commons License
DSpace@Amasya by Amasya University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Amasya: