• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   DSpace@Amasya
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
  •   DSpace@Amasya
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

Comparison of different classification methods for the preictal stage detection in EEG signals.

Erişim

info:eu-repo/semantics/closedAccess

Tarih

2017

Yazar

Yildiz, M.
Bergil, E.
Oral, C.

Üst veri

Tüm öğe kaydını göster

Özet

In this study, we present an evaluation and comparison of the widely used linear discriminant analysis, k-Nearest neighbor algorithm, support vector machines, multi-layer perceptron neural network and decision tree classification performances for preictal stage detection in EEG signal. Analysis has been done for fourteen patients with epilepsy. Firstly, 26 features are extracted from time domain, frequency domain and power spectrum. The feature set dimensionality has been reduced from 26 to 8 using Principal Component Analysis. Finally, five classifiers have been employed to classify EEG signals into normal, ictal and preictal stages. The classification is performed for patient-specific. We emphasized the importance of the analysis of preictal stage for seizure prediction. According to classification results and ROC analysis, Linear Discriminant Analysis and Support Vector Machines have better performances than others. LDA achieved the highest average sensitivity with 88.06% in the preictal stage detection process. The results are very promising and contributing to possible guide for future seizure detection and prediction studies.

Kaynak

BIOMEDICAL RESEARCH-INDIA

Cilt

28

Sayı

2

Bağlantı

https://hdl.handle.net/20.500.12450/1146

Koleksiyonlar

  • WoS İndeksli Yayınlar Koleksiyonu [2182]



DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 




| Yönerge | Rehber | İletişim |

DSpace@Amasya

by OpenAIRE
Gelişmiş Arama

sherpa/romeo

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreBölüme GöreYayıncıya GöreKategoriye GöreDile GöreErişim ŞekliBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreBölüme GöreYayıncıya GöreKategoriye GöreDile GöreErişim Şekli

Hesabım

GirişKayıt

DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 


|| Yönerge || Rehber || Kütüphane || Amasya Üniversitesi || OAI-PMH ||

Amasya Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı, Amasya, Turkey
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz: openaccess@amasya.edu.tr

Creative Commons License
DSpace@Amasya by Amasya University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Amasya: