Basit öğe kaydını göster

dc.contributor.authorGok, Burcu
dc.contributor.authorOrnek, Bulent Nafi
dc.date.accessioned2019-09-01T13:04:54Z
dc.date.available2019-09-01T13:04:54Z
dc.date.issued2017
dc.identifier.issn1225-1763
dc.identifier.issn2234-3024
dc.identifier.urihttps://dx.doi.org/10.4134/CKMS.c160196
dc.identifier.urihttps://hdl.handle.net/20.500.12450/1123
dc.descriptionWOS: 000408436700018en_US
dc.description.abstractIn this paper, a boundary version of Schwarz lemma is investigated. We take into consideration a function f(z) holomorphic in the unit disc and f (0) = 0, f'(0) = 1 such that R f'(z) > 1-alpha/2, -1 < alpha < 1, we estimate a modulus of the second non-tangential derivative of f(z) function at the boundary point z(0) with Rf'(z(0)) = 1-alpha/2, by taking into account their first nonzero two Maclaurin coefficients. Also, we shall give an estimate below vertical bar f ''(z(0))vertical bar according to the first nonzero Taylor coefficient of about two zeros, namely z = 0 and z(1) not equal 0. The sharpness of these inequalities is also proved.en_US
dc.language.isoengen_US
dc.publisherKOREAN MATHEMATICAL SOCen_US
dc.relation.isversionof10.4134/CKMS.c160196en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectSchwarz lemma on the boundaryen_US
dc.subjectholomorphic functionen_US
dc.subjectsecond non-tangential derivativeen_US
dc.subjectcritical pointsen_US
dc.titleESTIMATES FOR SECOND NON-TANGENTIAL DERIVATIVES AT THE BOUNDARYen_US
dc.typearticleen_US
dc.relation.journalCOMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETYen_US
dc.identifier.volume32en_US
dc.identifier.issue3en_US
dc.identifier.startpage689en_US
dc.identifier.endpage707en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.contributor.department-temp[Gok, Burcu] Amasya Univ, Dept Math, TR-05100 Merkez Amasya, Turkey -- [Ornek, Bulent Nafi] Amasya Univ, Dept Comp Engn, TR-05100 Merkez Amasya, Turkeyen_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster