• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Multi-Scale Mechanical Behavior of Liquid Elium® Based Thermoplastic Matrix Composites Reinforced with Different Fiber Types: Insights from Fiber-Matrix Adhesion Interactions

xmlui.dri2xhtml.METS-1.0.item-rights

info:eu-repo/semantics/closedAccess

Date

2024

Author

Kaybal, Halil Burak
Ulus, Hasan
Cacik, Fatih
Eskizeybek, Volkan
Avci, Ahmet

Metadata

Show full item record

Abstract

Elium (R) liquid thermoplastic resin, with room-temperature curing and recyclability, enables large-scale production. However, limited research exists on the fiber-matrix interface, and understanding micro-scale interactions is key to influencing the composite's macro-scale mechanical properties. This study investigates the interfacial adhesion of glass, carbon, basalt, and aramid fibers-reinforced liquid Elium (R) thermoplastic matrix composites at micro-, meso-, and macro-scales. Contact angle measurements show 53-56 degrees for glass fibers, indicating superior wettability with the Elium (R) matrix, while carbon, aramid, and basalt fibers exhibit 58-62 degrees, 73-74 degrees, and 79-86 degrees, respectively. Micro-bond tests demonstrate the highest load-carrying capacity in the interface between glass fibers and the matrix, with glass fibers carrying 11.4% more load than carbon fibers and 25.8% more than basalt fibers. Fiber bundle tests, including transverse and 45 degrees fiber bundle tests, highlight the superior load-carrying performance of glass fibers, with all fiber types showing increased load-carrying capacities in the 45 degrees tests. The micro-scale and meso-scale data obtained from micro-bond and fiber bundle tests corroborated the results of the macro-scale interlaminar shear stress (ILSS) tests, confirming the significant influence of the fiber-matrix interface on the mechanical integrity of the composites. The shear strength at the glass/Elium (R) interface was 47.54 MPa, which was 8.5% higher than carbon, 20.3% higher than aramid, and 25.9% higher than basalt interfaces. These findings advance our understanding of the mechanical behavior and interfacial adhesion in thermoplastic matrix composites. They underscore the crucial role of the fiber/matrix interface in determining the mechanical properties of composites and offer insights into the compatibility of diverse fiber reinforcements with the innovative Elium (R) matrix.

Volume

25

Issue

12

URI

https://doi.org/10.1007/s12221-024-00781-4
https://hdl.handle.net/20.500.12450/6098

Collections

  • WoS İndeksli Yayınlar Koleksiyonu [2182]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@Amasya

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess Type

My Account

LoginRegister

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Instruction || Guide || Library || Amasya University || OAI-PMH ||

Amasya Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı, Amasya, Turkey
If you find any errors in content, please contact: openaccess@amasya.edu.tr

Creative Commons License
DSpace@Amasya by Amasya University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Amasya: