• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Convolution kernel size effect on convolutional neural network in histopathological image processing applications

xmlui.dri2xhtml.METS-1.0.item-rights

info:eu-repo/semantics/closedAccess

Date

2018

Author

Ozturk S.
Ozkaya U.
Akdemir B.
Seyfi L.

Metadata

Show full item record

Abstract

In this study, the change in the classification success of the convolutional neural network (CNN) is investigated when the dimensions of the convolution window are altered. For this purpose, four different linear convolution neural network architectures are constructed. The first architecture includes 4 convolution layers with 3×3 convolution window dimensions. The second architecture includes 4 convolution layers with 5×5 convolution window dimensions. The third architecture includes 4 convolution layers with 7×7 convolution window dimensions. The fourth architecture includes 4 convolution layers with 9×9 convolution window dimensions. A dataset consisting of histopathological image patches is used to test the CNN architects that are created. 2000 training images and 250 validation images on dataset are applied to all architectures with the same order, in order to fair assessment. In conclusion, the effect of convolution dimensions on classification of histopathological images by deep learning methods is determined. The test results of four different linear convolutional neural network architectures are evaluated using sensitivity, specificity and accuracy parameters. © 2018 IEEE.

Source

2018 International Symposium on Fundamentals of Electrical Engineering, ISFEE 2018

URI

https://dx.doi.org/10.1109/ISFEE.2018.8742484
https://hdl.handle.net/20.500.12450/511

Collections

  • Scopus İndeksli Yayınlar Koleksiyonu [1574]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@Amasya

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess Type

My Account

LoginRegister

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Instruction || Guide || Library || Amasya University || OAI-PMH ||

Amasya Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı, Amasya, Turkey
If you find any errors in content, please contact: openaccess@amasya.edu.tr

Creative Commons License
DSpace@Amasya by Amasya University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Amasya: