• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Assessment of CSP-based two-stage channel selection approach and local transformation-based feature extraction for classification of motor imagery/movement EEG data

xmlui.dri2xhtml.METS-1.0.item-rights

info:eu-repo/semantics/closedAccess

Date

2019

Author

Onay F.K.
Köse C.

Metadata

Show full item record

Abstract

The main idea of brain-computer interfaces (BCIs) is to facilitate the lives of patients having difficulties to move their muscles due to a disorder of their motor nervous systems but healthy cognitive functions. BCIs are usually electroencephalography (EEG)-based, and the success of the BCIs relies on the precision of signal preprocessing, detection of distinctive features, usage of suitable classifiers and selection of effective channels. In this study, a two-stage channel selection and local transformation-based feature extraction are proposed for the classification of motor imagery/movement tasks. In the first stage of the channel selection, the channels were combined according to the neurophysiological information about brain functions acquired from the literature, then averaged and a single channel was formed. In the second stage, selective channels were specified with the common spatial pattern-linear discriminant analysis (CSP-LDA)-based sequential channel removal. After the channel selection phase, the feature extraction was carried out with local transformation-based methods (LTBM): local centroid pattern (LCP), one-dimensional-local gradient pattern (1D-LGP), local neighborhood descriptive pattern (LNDP) and one-dimensional-local ternary pattern (1D-LTP). The distinctions and deficiencies of these methods were compared with other methods in the literature and the classification performances of the k-nearest neighbor (k-NN) and the support vector machines (SVM) were evaluated. As a result, the proposed methods yielded the highest average classification accuracies as 99.34%, 95.95%, 98.66% and 99.90% with the LCP, 1D-LGP, LNDP and 1D-LTP when using k-NN, respectively. The two-stage channel selection and 1D-LTP method showed promising results for recognition of motor tasks. The LTBM will contribute to the development of EEG-based BCIs with the advantages of high classification accuracy, easy implementation and low computational complexity. © 2019 Walter de Gruyter GmbH, Berlin/Boston 2019.

Source

Biomedizinische Technik

URI

https://dx.doi.org/10.1515/bmt-2018-0201
https://hdl.handle.net/20.500.12450/500

Collections

  • Scopus İndeksli Yayınlar Koleksiyonu [1574]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@Amasya

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess Type

My Account

LoginRegister

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Instruction || Guide || Library || Amasya University || OAI-PMH ||

Amasya Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı, Amasya, Turkey
If you find any errors in content, please contact: openaccess@amasya.edu.tr

Creative Commons License
DSpace@Amasya by Amasya University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Amasya: