• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   DSpace@Amasya
  • Rektörlüğe Bağlı Birimler
  • Öksüz Yayınları
  • Öğe Göster
  •   DSpace@Amasya
  • Rektörlüğe Bağlı Birimler
  • Öksüz Yayınları
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

Identification and Classification of Damage in DNA Imagery Using Deep Learning Algorithms

Erişim

info:eu-repo/semantics/openAccess

Tarih

2024

Yazar

Güngör, Cengiz
Aktaş, Ali

Üst veri

Tüm öğe kaydını göster

Özet

In this study, the application of deep learning, particularly Convolutional Neural Networks (CNNs), to analyze comet assay images for DNA damage assessment is explored. The comet as-say is a pivotal method for detecting DNA strand breaks at the cellular level, essential in geno-toxicity and carcinogenicity research. Traditional approaches to analyze these images often in-volve manual labor or basic computational tools, which are inefficient, especially with noisy data. This research addresses these inefficiencies by developing a custom CNN model to auto-matically classify DNA damage levels in comet assay images. The dataset consists of 5,326 im-ages, categorized into six damage levels: from undamaged (C0) to extensively damaged (C4), plus an unidentifiable category (C6). Data augmentation was employed to enhance the model's robustness by creating varied inputs for training. The CNN processes the raw images through several layers to extract features and identify patterns, facilitating the classification of DNA damage levels. The model's performance was assessed using a confusion matrix, achieving an overall classification accuracy of approximately 92%. Although the model was highly accurate in distinguishing severe damage levels, it struggled with closely related classes, such as slightly and moderately damaged DNA. This study underscores the potential of deep learning in auto-mating and improving the analysis of comet assay images. CNNs offer a more accurate and effi-cient alternative to traditional methods, which could significantly advance research in genotoxi-city and clinical diagnostics, leading to a better understanding and monitoring of DNA damage in biological systems.

Cilt

2024

Sayı

21

Bağlantı

https://hdl.handle.net/20.500.12450/5006

Koleksiyonlar

  • Öksüz Yayınları [1372]



DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 




| Yönerge | Rehber | İletişim |

DSpace@Amasya

by OpenAIRE
Gelişmiş Arama

sherpa/romeo

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreBölüme GöreYayıncıya GöreKategoriye GöreDile GöreErişim ŞekliBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreBölüme GöreYayıncıya GöreKategoriye GöreDile GöreErişim Şekli

Hesabım

GirişKayıt

DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 


|| Yönerge || Rehber || Kütüphane || Amasya Üniversitesi || OAI-PMH ||

Amasya Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı, Amasya, Turkey
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz: openaccess@amasya.edu.tr

Creative Commons License
DSpace@Amasya by Amasya University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Amasya: