• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Power-law fitness scaling on multi-objective evolutionary algorithms: interpretations of experimental results

xmlui.dri2xhtml.METS-1.0.item-rights

info:eu-repo/semantics/closedAccess

Date

2019

Author

Ergul E.U.
Eminoglu I.

Metadata

Show full item record

Abstract

The effect of power-law fitness scaling method on the convergence and distribution of MOEAs is investigated in a systematic fashion. The proposed method is named as gamma (?) correction-based fitness scaling (GCFS). What scaling does is that the selection pressure of a population can be efficiently regulated. Hence, fit and unfit individuals may be separated well in fitness-wise before going to the selection mechanism. It is then applied to Strength Pareto Evolutionary Algorithm 2 (SPEA2) and Domination Power of an individual Genetic Algorithm (DOPGA). Firstly, the effectiveness of GCFS is tested by 11 static gamma values (including 0.5, 1, 2, …, 9, 10) on nine well-known benchmarks. Simulated study safely states that SPEA2 and DOPGA may perform generally better with the square (? = 2) and the cubic (? = 3) of original fitness value, respectively. Secondly, an adaptive version of GCFS is proposed based on statistical merits (standard deviation and mean of fitness values) and implemented to the selected MOEAs. Generally speaking, fitness scaling significantly improves the convergence properties of MOEAs without extra computational burdens. It is observed that the convergence ability of existing MOEAs with fitness scaling (static or adaptive) can be improved. Simulated results also show that GCFS is only effective when fitness proportional selection methods (such as stochastic universal sampling—SUS) are used. GCFS is not effective when tournament selection is used. © 2019, Springer-Verlag GmbH Germany, part of Springer Nature.

Source

Soft Computing

URI

https://dx.doi.org/10.1007/s00500-019-04242-6
https://hdl.handle.net/20.500.12450/496

Collections

  • Scopus İndeksli Yayınlar Koleksiyonu [1574]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@Amasya

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess Type

My Account

LoginRegister

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Instruction || Guide || Library || Amasya University || OAI-PMH ||

Amasya Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı, Amasya, Turkey
If you find any errors in content, please contact: openaccess@amasya.edu.tr

Creative Commons License
DSpace@Amasya by Amasya University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Amasya: