• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

INCREASING THE ELECTRICAL PROPERTIES OF FIBER COMPOSITES FOR EMI SHIELDING PURPOSES WITH PEDOT: PSS DROP COATING METHOD

xmlui.dri2xhtml.METS-1.0.item-rights

info:eu-repo/semantics/closedAccess

Date

2023

Author

Duzcukoglu, Hayrettin
Kaybal, Halil Burak
Yeasmin, Farzana
Asmatulu, Ramazan

Metadata

Show full item record

Abstract

The increasing demand for composite materials with enhanced electrical conductivity has driven research in various industries, including automotive, aviation, and electronic devices. This study explores the application of drop coating with PEDOT: PSS (poly(3,4-ethylenedioxythiophene): polystyrene sulfonate) to improve the electrical conductivity of prepreg glass and carbon fiber composites, as well as Kevlar composites prepared with hand layup process using an epoxy resin and hardener. The study investigates the impact of surface preparation techniques, including UV radiation and sulfuric acid treatment, on the adhesion of the coating. Water contact angle measurements demonstrate the improved wetting capability of the composite surfaces after surface treatments. Fourier Transform Infrared (FTIR) spectroscopy analysis reveals changes in the chemical compositions of the coated surfaces. The electrical conductivity of the coated surfaces is measured at different temperatures and layer counts. The results show that the drop coating process significantly enhances the electrical conductivity of the composite structures, with carbon fiber composites exhibiting the highest conductivity. Adhesion tests indicate that surface treatment and temperature play crucial roles in achieving satisfactory adhesion between the coating and the composite surface. The findings of this study provide valuable insights into the application of PEDOT: PSS drop cast coating for enhancing electrical conductivity in composite materials and pave the way for advancements in coating technologies on composite surfaces for various applications in aviation, energy storage, electronic devices, and sustainable manufacturing technologies. Copyright © 2023. Used by CAMX - The Composites and Advanced Materials Expo. CAMX Conference Proceedings.

URI

https://hdl.handle.net/20.500.12450/4320

Collections

  • Scopus İndeksli Yayınlar Koleksiyonu [1574]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@Amasya

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess Type

My Account

LoginRegister

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Instruction || Guide || Library || Amasya University || OAI-PMH ||

Amasya Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı, Amasya, Turkey
If you find any errors in content, please contact: openaccess@amasya.edu.tr

Creative Commons License
DSpace@Amasya by Amasya University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Amasya: