• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace Home
  • Enstitüler
  • Fen Bilimleri Enstitüsü
  • Tez Koleksiyonu
  • View Item
  •   DSpace Home
  • Enstitüler
  • Fen Bilimleri Enstitüsü
  • Tez Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

İki noktada süreksizliğe sahip olan bir periyodik Sturm-Liouville probleminin bazı özellikleri

xmlui.dri2xhtml.METS-1.0.item-rights

info:eu-repo/semantics/openAccess

Date

2023

Author

Yüksel, Umutkan

Metadata

Show full item record

Abstract

Bu tez çalışmasında iki noktada süreksizliğe sahip periyodik Sturm-Liouville sınır - de ğer - geçiş problemi araştırılmıştır. Çalışma beş bölümden oluşmaktadır. Birinci bölümde, Sturm-Liouville problemleri hakkında genel bilgiler verilmiştir. İkinci bölümde, Sturm-Liouville teorisi ile ilgili literatürde yapılan çalışmalardan bahsedilmiştir. Üçüncü bölümde, bu tez çalışmasında yararlanılacak olan Sturm-Liouville teorisine ait tanım, teoremler ve ispatlara değinilmiştir. Dördüncü bölümde, periyodik Sturm-Liouville sınır-değer-geçiş probleminin özdeğerlerinin reel olduğu, özfonksiyonlar sisteminin ortogonal olduğu ve problemin kendine eşlenik olduğu ispatlanmıştır. Problemle yakından ilgili temel çözümler tanımlanmıştır. Temel çözümlere karşılık gelen integral denklemler bulunmuş ve bu integral denklemler aracılığı ile temel çözümler için asimptotik formüller elde edilmiştir. Probleme karşılık gelen karakteristik denklem tanımlanmıştır. Çalışılan problemin özdeğerlerinin karakteristik denkleminin sıfır yerleri ile çakışık olduğu gösterilmiştir. Son bölümde ise bu çalışma ile ilgili ortaya çıkan sonuçlara yer verilmiştir
 
In this thesis, the periodic Sturm-Liouville boundary-value-transition problem with discontinuity at two points is investigated. The study consists of five chapters. In the first chapter, general information about Sturm-Liouville problems is given. In the second chapter, the works on Sturm-Liouville theory in the literature are mentioned. In the third chapter, some the methods definitions, theorems and proofs of the Sturm-Liouville theory which are used in this thesis are given. In the fourth section, it is shown that the eigenvalues of the periodic Sturm-Liouville boundary-value-transmittion problem are real. Fundamental solutions closely related to the problem are defined. The integral equations corresponding to the fundamental solutions are defined and asymptotic formulas for the fundamental solutions are found by using these integral equations. The characteristic equation corresponding to the problem is determined. It is shown that the eigenvalues of the studied problem coincide with the zeros of the characteristic equation. In the last chapter, the importance of the thesis topic is discussed.
 

URI

https://tez.yok.gov.tr/UlusalTezMerkezi/TezGoster?key=j_Fjwp4JS4mk97Puqti8roBrQsKKqwSG7suz55PggVJ_bCTIQ-Mn9k2zLZ2YNwyd
https://hdl.handle.net/20.500.12450/3576

Collections

  • Tez Koleksiyonu [397]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@Amasya

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess Type

My Account

LoginRegister

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Instruction || Guide || Library || Amasya University || OAI-PMH ||

Amasya Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı, Amasya, Turkey
If you find any errors in content, please contact: openaccess@amasya.edu.tr

Creative Commons License
DSpace@Amasya by Amasya University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Amasya: