• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   DSpace@Amasya
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
  •   DSpace@Amasya
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

Attention-based end-to-end CNN framework for content-based X-ray image retrieval

Erişim

info:eu-repo/semantics/openAccess

Tarih

2021

Yazar

Ozturk, Saban
Alhudhaif, Adi
Polat, Kemal

Üst veri

Tüm öğe kaydını göster

Özet

The widespread use of medical imaging devices allows deep analysis of diseases. However, the task of examining medical images increases the burden of specialist doctors. Computer-assisted systems provide an effective management tool that enables these images to be analyzed automatically. Although these tools are used for various purposes, today, they are moving towards retrieval systems to access increasing data quickly. In hospitals, the need for content-based image retrieval systems is seriously evident in order to store all images effectively and access them quickly when necessary. In this study, an attention-based end-to-end convolutional neural network (CNN)framework that can provide effective access to similar images from a large X-ray dataset is presented. In the first part of the proposed framework, a fully convolutional network architecture with attention structures is presented. This section contains several layers for determining the saliency points of X-ray images. In the second part of the framework, the modified image with X-ray saliency map is converted to representative codes in Euclidean space by the ResNet-18 architecture. Finally, hash codes are obtained by transforming these codes into hamming spaces. The proposed study is superior in terms of high performance and customized layers compared to current state-of-the-art X-ray image retrieval methods in the literature. Extensive experimental studies reveal that the proposed framework can increase the current precision performance by up to 13

Cilt

29

Bağlantı

https://doi.org/10.3906/elk-2105-242
https://search.trdizin.gov.tr/yayin/detay/526850
https://hdl.handle.net/20.500.12450/2688

Koleksiyonlar

  • Scopus İndeksli Yayınlar Koleksiyonu [1574]
  • TR-Dizin İndeksli Yayınlar Koleksiyonu [1323]
  • WoS İndeksli Yayınlar Koleksiyonu [2182]



DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 




| Yönerge | Rehber | İletişim |

DSpace@Amasya

by OpenAIRE
Gelişmiş Arama

sherpa/romeo

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreBölüme GöreYayıncıya GöreKategoriye GöreDile GöreErişim ŞekliBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreBölüme GöreYayıncıya GöreKategoriye GöreDile GöreErişim Şekli

Hesabım

GirişKayıt

DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 


|| Yönerge || Rehber || Kütüphane || Amasya Üniversitesi || OAI-PMH ||

Amasya Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı, Amasya, Turkey
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz: openaccess@amasya.edu.tr

Creative Commons License
DSpace@Amasya by Amasya University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Amasya: