• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Review on the Physical Parameters Affecting the Bond Behavior of FRP Bars Embedded in Concrete

xmlui.dri2xhtml.METS-1.0.item-rights

info:eu-repo/semantics/openAccess

Date

2022

Author

Basaran, Bogachan
Kalkan, Ilker
Beycioglu, Ahmet
Kasprzyk, Izabela

Metadata

Show full item record

Abstract

The present study is a detailed literal survey on the bond behavior of FRP (Fiber Reinforced Polymer) reinforcing bars embedded in concrete. There is an urgent need for the accurate assessment of the parameters affecting the FRP-concrete bond and quantification of these effects. A significant majority of the previous studies could not derive precise and comprehensive conclusions on the effects of each of these parameters. The present study aimed at listing all of the physical parameters affecting the concrete-FRP bond, presenting the effects of each of these parameters based on the common opinions of the previous researchers and giving reasonable justifications on these effects. The studies on each of the parameters are presented in detailed tables. Among all listed parameters, the surface texture was established to have the most pronounced effect on the FRP-concrete bond strength. The bond strength values of the bars with coarse sand-coating exceeded the respective values of the fine sand-coated ones. However, increasing the concrete strength was found to result in a greater improvement in bond behavior of fine sand-coated bars due to the penetration of concrete particles into the fine sand-coating layer. The effects of fiber type, bar diameter and concrete compressive strength on the bar bond strength was shown to primarily originate from the relative slip of fibers inside the resin of the bar, also known as the shear lag effect.

Volume

14

Issue

9

URI

https://doi.org/10.3390/polym14091796
https://hdl.handle.net/20.500.12450/2670

Collections

  • PubMed İndeksli Yayınlar Koleksiyonu [458]
  • Scopus İndeksli Yayınlar Koleksiyonu [1574]
  • WoS İndeksli Yayınlar Koleksiyonu [2182]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@Amasya

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess Type

My Account

LoginRegister

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Instruction || Guide || Library || Amasya University || OAI-PMH ||

Amasya Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı, Amasya, Turkey
If you find any errors in content, please contact: openaccess@amasya.edu.tr

Creative Commons License
DSpace@Amasya by Amasya University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Amasya: