• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Cross-Linked Polymer Brushes Containing N-Halamine Groups for Antibacterial Surface Applications

xmlui.dri2xhtml.METS-1.0.item-rights

info:eu-repo/semantics/openAccess

Date

2021

Author

Kinali-Demirci, Selin

Metadata

Show full item record

Abstract

Microbial contamination is a significant issue in various areas, especially in the food industry. In this study, to overcome microbial contamination, cross-linked polymer brushes containing N-halamine were synthesized, characterized, and investigated for antibacterial properties. The cross-linked polymer brushes with different N-halamine ratios were synthesized by in-situ cross-linking methods with reversible addition-fragmentation chain transfer (RAFT) polymerization using a bifunctional cross-linker. The RAFT agent was immobilized on an amine-terminated silicon wafer surface and utilized in the surface-initiated RAFT polymerization of [N-(2-methyl-1-(4-methyl-2,5-dioxoimidazolidin-4-yl)propane-2-yl)acrylamide] (hydantoin acrylamide, HA), and N-(2-hydroxypropyl)methacrylamide) (HPMA) monomers. Measurement of film thickness, contact angle, and surface morphology of the resulting surfaces were used to confirm the structural characteristics of cross-linked polymer brushes. The chlorine content of the three different surfaces was determined to be approximately 8-31 x 10(13) atoms/cm(2). At the same time, it was also observed that the activation-deactivation efficiency decreased during the recharge-discharge cycles. However, it was determined that the prepared N-halamine-containing cross-linked polymer brushes inactivated approximately 96% of Escherichia coli and 91% of Staphylococcus aureus. In conclusion, in the framework of this study, high-performance brush gels were produced that can be used on antibacterial surfaces.

Volume

13

Issue

8

URI

https://doi.org/10.3390/polym13081269
https://hdl.handle.net/20.500.12450/2669

Collections

  • PubMed İndeksli Yayınlar Koleksiyonu [458]
  • Scopus İndeksli Yayınlar Koleksiyonu [1574]
  • WoS İndeksli Yayınlar Koleksiyonu [2182]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@Amasya

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess Type

My Account

LoginRegister

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Instruction || Guide || Library || Amasya University || OAI-PMH ||

Amasya Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı, Amasya, Turkey
If you find any errors in content, please contact: openaccess@amasya.edu.tr

Creative Commons License
DSpace@Amasya by Amasya University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Amasya: