• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   DSpace@Amasya
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
  •   DSpace@Amasya
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Novel Binary Emperor Penguin Optimizer for Feature Selection Tasks

Erişim

info:eu-repo/semantics/openAccess

Tarih

2022

Yazar

Kalra, Minakshi
Kumar, Vijay
Kaur, Manjit
Idris, Sahar Ahmed
Ozturk, Saban
Alshazly, Hammam

Üst veri

Tüm öğe kaydını göster

Özet

Nowadays, due to the increase in information resources, the number of parameters and complexity of feature vectors increases. Optimization methods offer more practical solutions instead of exact solutions for the solution of this problem. The Emperor Penguin Optimizer (EPO) is one of the highest performing meta-heuristic algorithms of recent times that imposed the gathering behavior of emperor penguins. It shows the superiority of its performance over a wide range of optimization problems thanks to its equal chance to each penguin and its fast convergence features. Although traditional EPO overcomes the optimization problems in continuous search space, many problems today shift to the binary search space. Therefore, in this study, using the power of traditional EPO, binary EPO (BEPO) is presented for the effective solution of binary-nature problems. BEPO algorithm uses binary search space instead of searching solutions like conventional EPO algorithm in continuous search space. For this purpose, the sigmoidal functions are preferred in determining the emperor positions. In addition, the boundaries of the search space remain constant by choosing binary operators. BEPO's performance is evaluated over twenty-nine benchmarking functions. Statistical evaluations are made to reveal the superiority of the BEPO algorithm. In addition, the performance of the BEPO algorithm was evaluated for the binary feature selection problem. The experimental results reveal that the BEPO algorithm outperforms the existing binary meta-heuristic algorithms in both tasks.

Cilt

70

Sayı

3

Bağlantı

https://doi.org/10.32604/cmc.2022.020682
https://hdl.handle.net/20.500.12450/2636

Koleksiyonlar

  • Scopus İndeksli Yayınlar Koleksiyonu [1574]
  • WoS İndeksli Yayınlar Koleksiyonu [2182]



DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 




| Yönerge | Rehber | İletişim |

DSpace@Amasya

by OpenAIRE
Gelişmiş Arama

sherpa/romeo

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreBölüme GöreYayıncıya GöreKategoriye GöreDile GöreErişim ŞekliBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreBölüme GöreYayıncıya GöreKategoriye GöreDile GöreErişim Şekli

Hesabım

GirişKayıt

DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 


|| Yönerge || Rehber || Kütüphane || Amasya Üniversitesi || OAI-PMH ||

Amasya Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı, Amasya, Turkey
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz: openaccess@amasya.edu.tr

Creative Commons License
DSpace@Amasya by Amasya University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Amasya: