• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Antioxidant, Cytotoxic Activity and Pharmacokinetic Studies by Swiss Adme, Molinspiration, Osiris and DFT of PhTAD-substituted Dihydropyrrole Derivatives

xmlui.dri2xhtml.METS-1.0.item-rights

info:eu-repo/semantics/closedAccess

Date

2022

Author

Ayar, Arif
Aksahin, Masuk
Mesci, Seda
Yazgan, Burak
Gul, Melek
Yildirim, Tuba

Metadata

Show full item record

Abstract

Background: Pyrrole compounds having a heterocyclic structure are the most researched and biological activities such as antioxidant and anticancer activities. Objective: Herein is a first effort to study the significance of heterocyclic compounds to include pyrrole and triazolidine-3,5-dion moiety, on the phannacokinetic, antioxidant activity and cytotoxic activity on MCF-7 and MCF-12A cell lines. Methods: The molecular structures of compounds I-XIV were simulated by the theoretical B3LYP/DFT method. Pharmacokinetic studies of PhTAD-substituted heterocyclic compounds (I-XIV) were analyzed to show Lipinski's rules via in silico methods of Swiss-ADME. The drug likeness calculations were carried out in Molinspiration analyses. Some toxicity risk parameter can be quantified using Osiris. Antioxidant activities determined by DPPH, Fe+2 ions chelating and reducing. Cytotoxic activity measured by MIT and RICA. Results: Compared with the DPPH activity, the metal chelating activity exhibited serious similar antioxidant effects by PhTAD substituted pyrrole compounds. The same compounds showed the highest activity among the two antioxidant activities. The IC50 values of the compounds are in the range of 12 and 290 mu M in the MCF-7 cell line. In the MTT and RICA assays, All compounds showed cytotoxic activity, but about half of the fourteen compounds showed high cytotoxicity. IC50 values of the compounds are in the range of 5 and 54 mu M for MTT and range of 1.5 and 44 mu M for RICA. Conclusion: Data of the antioxidant and cytotoxic activity of PhTAD-substituted dihydropyrrole-derived compounds in MCF-7 and MCF-12A cell lines confirmed that the compounds are biologically active compound and are notable for anti-cancer researches.

Volume

18

Issue

1

URI

https://doi.org/10.2174/1573409917666210223105722
https://hdl.handle.net/20.500.12450/2568

Collections

  • PubMed İndeksli Yayınlar Koleksiyonu [458]
  • Scopus İndeksli Yayınlar Koleksiyonu [1574]
  • WoS İndeksli Yayınlar Koleksiyonu [2182]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@Amasya

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess Type

My Account

LoginRegister

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Instruction || Guide || Library || Amasya University || OAI-PMH ||

Amasya Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı, Amasya, Turkey
If you find any errors in content, please contact: openaccess@amasya.edu.tr

Creative Commons License
DSpace@Amasya by Amasya University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Amasya: