• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A NUMERICAL AND STATISTICAL APPROACH OF DRILLING PERFORMANCE ON MACHINING OF Ti-6Al-4V ALLOY

xmlui.dri2xhtml.METS-1.0.item-rights

info:eu-repo/semantics/closedAccess

Date

2022

Author

Ugur, Levent

Metadata

Show full item record

Abstract

Drilling, which constitutes one third of the machining operations, is widely used in many areas of the manufacturing industry. Various difficulties are encountered in the drilling process since the chip is formed in a closed limited chip flows. These difficulties directly affect the output parameters such as energy consumption, surface quality, and cutting force. Therefore, it is necessary to determine the ideal processing parameters to achieve the best performance. However, experimental research on machining processes requires both a long time and a high cost. For these reasons, machining outputs can be estimated by conducting drilling simulations with the finite element method. In this study, the finite element method is used in order to investigate the influence of different cutting parameters and different helix angles on the power and thrust force of Ti-6Al-4V (grade 5) alloy that is commonly used in the aviation industry. The study selected three different cutting speeds, feed rates, and helix angles as the cutting parameters. The experimental design was made according to the response surface method (RSM) Box-Behnken design in the Design-Expert program. Drilling simulations were performed using the ThirdWave AdvantEdge (TM) software. The lowest thrust force measured is 1241.39 N at 40 degrees helix angle, 2000-rpm revolution rate, and 0.05-mm/rev feed rate, while the lowest power consumed is 765.025W at 30 degrees helix angle, 1500-rpm revolution rate, and 0.05-mm/rev feed rate. As a result, it was determined that the most effective parameter for power and thrust force was the feed rate.

Volume

29

Issue

12

URI

https://doi.org/10.1142/S0218625X22501682
https://hdl.handle.net/20.500.12450/2430

Collections

  • Scopus İndeksli Yayınlar Koleksiyonu [1574]
  • WoS İndeksli Yayınlar Koleksiyonu [2182]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@Amasya

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess Type

My Account

LoginRegister

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Instruction || Guide || Library || Amasya University || OAI-PMH ||

Amasya Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı, Amasya, Turkey
If you find any errors in content, please contact: openaccess@amasya.edu.tr

Creative Commons License
DSpace@Amasya by Amasya University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Amasya: