MEASUREMENT OF SURFACE QUALITY AND OPTIMIZATION OF CUTTING PARAMETERS IN SLOT MILLING OF GFRP COMPOSITE MATERIALS WITH DIFFERENT FIBER RATIOS PRODUCED BY PULTRUSION METHOD
Özet
The final shape of fiber-reinforced polymer (FRP) materials is usually given by machining. However, machining FRP materials is complex and difficult. Appropriate cutting tools and cutting parameters should be determined to overcome these difficulties. In this work, glass fiber-reinforced polymer (GFRP) materials with 60% and 68% fiber ratio, produced by pultrusion method, were machined. End of the milling, surface roughness (Ra), delamination damage factor (Fdd), sound and vibration results were analyzed. Experiments were carried out with Taguchi L16 mixed design and the results were analyzed by Taguchi, ANOVA and Pareto charts. In Taguchi and Pareto analyses, the most effective parameter for surface roughness and delamination damage factor was the feed rate, and the cutting velocity for sound and vibration. Different regression models have been tried. Linear regression was found as most suitable. The significance values of the regression models are 92.04% for surface roughness, 87.12% for delamination damage factor, 98.64% for sound and 73.27% for vibration.