• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Synthetic pyrethroids common metabolite 3-phenoxybenzoic acid induces caspase-3 and Bcl-2 mediated apoptosis in human hepatocyte cells

xmlui.dri2xhtml.METS-1.0.item-rights

info:eu-repo/semantics/closedAccess

Date

2022

Author

Guvenc, Dilek
Inal, Sinem
Kuruca, Nilufer
Gokmen, Sedat
Guvenc, Tolga

Metadata

Show full item record

Abstract

Synthetic pyrethroids are a group of insecticides frequently used in public health and agriculture, and 3-PBA is a common metabolite of them. Although the liver is the primary organ responsible for metabolizing many compounds including pesticides, to the authors' knowledge there have been no studies on the direct hepatotoxic effects of 3-PBA. Therefore, this study aimed to investigate the possible hepatotoxic effects of 3-PBA on a Human Hepatoma Cell Line (HepG2) and the underlying apoptotic mechanisms. Firstly, an LC50 of 1041.242 mu M was calculated for 3-PBA by using the WST-1 test with concentrations ranging between 1 mu M and 10 mM. Following that, the HepG2 cells in the experimental group were exposed to 3 different concentrations of 3-PBA (1/5 LC50, 1/10 LC50 and 1/20 LC50) for 24 hours. The apoptotic mechanism was evaluated by using flow cytometry, and immunofluorescence assays for Caspase 3 and Bcl-2. In the flow cytometry assay, the total number of apoptotic cells increased in a dose dependent manner (p < 0.05). In the immunofluorescence assay, the Caspase 3 protein showed strong immunoreactivity in the experimental groups, while the reaction to the Bcl-2 protein was minimal. These results demonstrated that 3-PBA has a significant hepatotoxic effect on HepG2 cells and induces apoptosis via the regulation of Caspase-3 and Bcl-2. Furthermore, our results could further the understanding of the fundamental molecular mechanisms of 3-PBA hepatotoxicity. More studies are needed to determine the effects of long-term exposure to 3-PBA and also the molecular mechanisms underlying hepatotoxicity.

Volume

45

Issue

5

URI

https://doi.org/10.1080/01480545.2021.1894720
https://hdl.handle.net/20.500.12450/2320

Collections

  • PubMed İndeksli Yayınlar Koleksiyonu [458]
  • Scopus İndeksli Yayınlar Koleksiyonu [1574]
  • WoS İndeksli Yayınlar Koleksiyonu [2182]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@Amasya

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess Type

My Account

LoginRegister

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Instruction || Guide || Library || Amasya University || OAI-PMH ||

Amasya Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı, Amasya, Turkey
If you find any errors in content, please contact: openaccess@amasya.edu.tr

Creative Commons License
DSpace@Amasya by Amasya University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Amasya: