• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Examinations directed to characterization within the framework of spectroscopic and DFT approach on the structural isomer of the pyridine substituted thiazole

xmlui.dri2xhtml.METS-1.0.item-rights

info:eu-repo/semantics/closedAccess

Date

2021

Author

Erylmaz, Serpil
Misir, Ender

Metadata

Show full item record

Abstract

In the present paper, we reported the synthesis of two structural isomers of pyridine-substituted thiazole having heterocyclic moieties, characterized by XRD, FT-IR, NMR, UV-Vis and fluorescence techniques. Their molecular geometries and presence of hydrogen bond interactions were determined with single-crystal X-ray diffraction (XRD) analysis. The process steps of analyses performed with the theoretical approach were carried out with density functional theory (DFT), B3LYP functional and 6-311G(d,p) basis set. The parameters of molecular geometry, spectral vibrational modes base on potential energy distribution (PED) and H-1 and C-13-NMR chemical shifts for the structures were evaluated comparatively with DFT results. To determine photophysical properties, absorption bands with the time-dependent DFT (TD-DFT) approach and spectral emission bands were examined. Frontier molecular orbitals (FMOs), global and local reactivity descriptors, atomic charge distributions based on Mulliken and Natural Population analysis (MPA and NPA) were utilized to specify the reactivity properties of the structures. Further, nonlinear optical (NLO) properties and some thermodynamic parameters were investigated at the same theoretical level. The results of these analyses show that most of the spectral parameters examined are sensitive to the position of the substituent and the pyridine substitution 4-position to thiazole structure exhibit chemically more reactive a profile than at 2-position. (C) 2021 Elsevier B.V. All rights reserved.

Volume

1236

URI

https://doi.org/10.1016/j.molstruc.2021.130363
https://hdl.handle.net/20.500.12450/2265

Collections

  • Scopus İndeksli Yayınlar Koleksiyonu [1574]
  • WoS İndeksli Yayınlar Koleksiyonu [2182]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@Amasya

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess Type

My Account

LoginRegister

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Instruction || Guide || Library || Amasya University || OAI-PMH ||

Amasya Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı, Amasya, Turkey
If you find any errors in content, please contact: openaccess@amasya.edu.tr

Creative Commons License
DSpace@Amasya by Amasya University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Amasya: