• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Pressure effects on structural, electronic and anisotopic elastic properties of Si doped RuGe compound with different concentrations by first-principles calculations

xmlui.dri2xhtml.METS-1.0.item-rights

info:eu-repo/semantics/closedAccess

Date

2022

Author

Ciftci, Yasemin Oztekin
Coban, Cansu
Evecen, Meryem
Durukan, lknur Kars

Metadata

Show full item record

Abstract

In this study, we have performed first-principles density functional theory (DFT) calculations to investigate pressure and composition effects on the structural, elastic, and electronic properties of silicon doped RuGe ternary compounds (RuSixGe1-x) for an increasing molar fraction of Si atom from 0.0 to 1.0 by 0.1. For each x composition, we have investigated formation energies of different compositions under three different pressure to study the alloying effects on the stability of RuGe in the B2 structure. It was determined that our calculated lattice parameters were in good agreement with the experimental results and decreased with Si content. The band structures and partial density of states (PDOS) have been investigated as electronic property. Using calculated second-order elastic constants, mechanical properties have been obtained for all x compositions. Among the different compositions for RuSixGe1-x under pressure it has been found that the most stable alloys have been obtained for x = 0.9, 0.7, and 0.6 under 0 GPa, 30 GPa, and 60 GPa, respectively. Elastic and dynamical stabilities were confirmed by Born Stability Criteria and positive phonon dispersion curves. Also, the elastic anisotropy has been visualized in detail by plotting the directional dependence of compressibility, Poisson ratio, Young's, and Shear module.

Volume

291

URI

https://doi.org/10.1016/j.matchemphys.2022.126695
https://hdl.handle.net/20.500.12450/2256

Collections

  • Scopus İndeksli Yayınlar Koleksiyonu [1574]
  • WoS İndeksli Yayınlar Koleksiyonu [2182]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@Amasya

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess Type

My Account

LoginRegister

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Instruction || Guide || Library || Amasya University || OAI-PMH ||

Amasya Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı, Amasya, Turkey
If you find any errors in content, please contact: openaccess@amasya.edu.tr

Creative Commons License
DSpace@Amasya by Amasya University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Amasya: