• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   DSpace@Amasya
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
  •   DSpace@Amasya
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

An adaptive deep learning framework to classify unknown composite power quality event using known single power quality events

Erişim

info:eu-repo/semantics/closedAccess

Tarih

2021

Yazar

Sindi, Hatem
Nour, Majid
Rawa, Muhyaddin
Ozturk, Saban
Polat, Kemal

Üst veri

Tüm öğe kaydını göster

Özet

Distributed generation (DG) sources are preferred to meet today's energy needs effectively. The addition of many different types of renewable energy sources to the grid causes various problems in signal quality. Detection and classification of these problems increase efficiency by both the producer and the consumer. In the literature, incredibly singular and some composite power quality disturbance (PQD) detection is performed effectively. However, the multitude of composite PQD variations degrades the performance of existing algorithms. In this study, the classification of all PQD variations that may occur is performed by using singular PQD and some composite PQD signals. A different number of subcomponents representing the signal are created according to each signal characteristic. Instantaneous energies from these subcomponents are used as deep learning (DL) input. Deep learning cycles are created as much as the instantaneous energy number of each signal. Each cycle has specific features of defining a single event. Therefore, the proposed approach is able to classify composite PQD signals that it has not encountered before. The proposed method's performance is first evaluated with the known PQD events and compared with the current state-of-the-art methods in the literature. Then, a dataset containing the combinations of different events not encountered during the training is created, and the performance is evaluated on this dataset. In the experiments performed, it is revealed that the proposed framework produces higher performance than other state-of-the-art methods

Cilt

178

Bağlantı

https://doi.org/10.1016/j.eswa.2021.115023
https://hdl.handle.net/20.500.12450/2210

Koleksiyonlar

  • Scopus İndeksli Yayınlar Koleksiyonu [1574]
  • WoS İndeksli Yayınlar Koleksiyonu [2182]



DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 




| Yönerge | Rehber | İletişim |

DSpace@Amasya

by OpenAIRE
Gelişmiş Arama

sherpa/romeo

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreBölüme GöreYayıncıya GöreKategoriye GöreDile GöreErişim ŞekliBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreBölüme GöreYayıncıya GöreKategoriye GöreDile GöreErişim Şekli

Hesabım

GirişKayıt

DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 


|| Yönerge || Rehber || Kütüphane || Amasya Üniversitesi || OAI-PMH ||

Amasya Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı, Amasya, Turkey
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz: openaccess@amasya.edu.tr

Creative Commons License
DSpace@Amasya by Amasya University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Amasya: