• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Application of Pre-Trained Deep Convolutional Neural Networks for Coffee Beans Species Detection

xmlui.dri2xhtml.METS-1.0.item-rights

info:eu-repo/semantics/closedAccess

Date

2022

Author

Unal, Yavuz
Taspinar, Yavuz Selim
Cinar, Ilkay
Kursun, Ramazan
Koklu, Murat

Metadata

Show full item record

Abstract

Coffee is an important export product of the tropical countries where it is grown. Therefore, the separation of coffee beans in the world in terms of the quality element and variety forgery is an important situation. Currently, the use of manual control methods leads to the fact that the parsing processes are inconsistent, time-consuming, and subjective. Automated systems are needed to eliminate such negative situations. The aim of this study is to classify 3 different coffee beans by using their images, through the transfer learning method by utilizing 4 different Convolutional Neural Networks-based models, which are SqueezeNet, Inception V3, VGG16, and VGG19. The dataset used in the models' training was created specially for this study. A total of 1554 coffee bean images of Espresso, Kenya, and Starbucks Pike Place coffee types were collected with the created mechanism. Model training and model testing processes were carried out with the obtained images. In order to test the models, the cross-validation method was used. Classification success, Precision, Recall, and F-1 Score metrics were used for the detailed analysis of the models of performances. ROC curves were used for analyzing their distinctiveness. As a result of the tests, the average classification success of the models was determined as 87.3% for SqueezeNet, 81.4% for Inception V3, 78.2% for VGG16, and 72.5% for VGG19. These results demonstrate that the SqueezeNet is the most successful model. It is thought that this study may contribute to the subject of coffee beans of separation in the industry.

Volume

15

Issue

12

URI

https://doi.org/10.1007/s12161-022-02362-8
https://hdl.handle.net/20.500.12450/2123

Collections

  • Scopus İndeksli Yayınlar Koleksiyonu [1574]
  • WoS İndeksli Yayınlar Koleksiyonu [2182]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@Amasya

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess Type

My Account

LoginRegister

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Instruction || Guide || Library || Amasya University || OAI-PMH ||

Amasya Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı, Amasya, Turkey
If you find any errors in content, please contact: openaccess@amasya.edu.tr

Creative Commons License
DSpace@Amasya by Amasya University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Amasya: