• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

BUS-CAD: A computer-aided diagnosis system for breast tumor classification in ultrasound images using grid-search-optimized machine learning algorithms with extended and Boruta-selected features

xmlui.dri2xhtml.METS-1.0.item-rights

info:eu-repo/semantics/closedAccess

Date

2023

Author

Ozcan, Hakan

Metadata

Show full item record

Abstract

Breast cancer has become the most prominent type of cancer in the world. Early detection of breast cancer plays an important role in optimal treatment planning to decrease mortality. Breast ultrasound is widely used in diagnosing breast masses. Applications of machine learning in ultrasound imaging-based classification have shown promising potential for early and accurate detection of breast cancer. In this study, a new computer-aided diagnosis system based on machine learning techniques for breast cancer classification is proposed. Feature space is extended by using hybrid feature representations that combine both global and local texture statistics. A two-step feature selection process is implemented using Boruta all-relevant feature selection algorithm and iterative correlation analysis. A grid-search strategy is followed along with 20 times repeated 10-fold randomly stratified cross-validation to optimize machine learning algorithms. Fourteen classification models based on random forest (RF) and support vector machine trained using all combinations of global features and the features driven from gray-level co-occurrence matrix and local binary patterns are tested. The experiments showed that the RF classifier on the hybrid feature vector that combines all global and local features achieved the best classification performance with average accuracy and area under the curve of 97.81% and 99.80%, respectively. The results suggest that the proposed system efficiently improves the classification performance of breast lesions on ultrasound images and can assist clinical decision-making.

Volume

33

Issue

5

URI

https://doi.org/10.1002/ima.22873
https://hdl.handle.net/20.500.12450/2042

Collections

  • Scopus İndeksli Yayınlar Koleksiyonu [1574]
  • WoS İndeksli Yayınlar Koleksiyonu [2182]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@Amasya

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeDepartmentPublisherCategoryLanguageAccess Type

My Account

LoginRegister

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Instruction || Guide || Library || Amasya University || OAI-PMH ||

Amasya Üniversitesi Kütüphane ve Dokümantasyon Daire Başkanlığı, Amasya, Turkey
If you find any errors in content, please contact: openaccess@amasya.edu.tr

Creative Commons License
DSpace@Amasya by Amasya University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Amasya: