The characteristics of microwave-treated insoluble and soluble dietary fibers from grape and their effects on bread quality
xmlui.dri2xhtml.METS-1.0.item-rights
info:eu-repo/semantics/openAccessDate
2023Metadata
Show full item recordAbstract
This study investigated the morphological and hydration properties of untreated and microwave (MW)-treated isolate forms of soluble (SDF) and insoluble dietary fibers (IDF) obtained from grapes. Then, the rheological, textural, and other physical effects of the fibers (5% flour basis) were evaluated on bread quality. For this purpose, grape pomace was valorized as the juice extraction waste. MW significantly improved hydration properties of SDF and IDF by modifying their microstructures (p < .05). SDF had a clean-cut morphology whereas IDF had an indented microstructure with a wrinkled surface. After MW treatment, deep grooves and holes were observed. These variations in the IDF structure were more extensive. DF additions influenced water absorption, mixing tolerance index, dough development time, dough stability, resistance to extension, extensibility, energy of the dough and hardness, cohesiveness, springiness, chewiness, weight loss, specific volume, crust color difference of the bread in comparison with the properties of control samples significantly (p < .05). IDF had especially pronounced effects on the dough and bread characteristics. SDF enrichment provided more comparable results with the control bread than IDF. The originality of this work is to characterize isolated (100% purity) SDFs and IDFs, then discuss their effects on semi (dough) and final (bread) product quality.